Wednesday, November 17, 2010

The sky is falling: How Skylab became an Australian icon

A couple of months back Ursula Frederick asked me if I'd be interested in contributing to a volume of the Journal of Australian Studies, guest edited by her and Kylie Message (both of ANU), on the theme of Media and Materiality.  To cut a long story short, the theme is about how studies of material culture intersect with cultural studies.  It's a teensy bit postmodern for me (sorry, Urs!), but Dr Space Junk is nothing if not versatile, or so I like to think.

Ursula thought I might like to write about Skylab, and she was right.  I have quietly been filing away bits and pieces about it with the intention of doing something with them, so here is the spur.  Despite this, coming up with a coherent abstract to fit the theme of the volume was harder than I thought.  Here it is as sent to Ursula; as usual the actual paper will probably evolve a bit as I get into the research and writing of it.

In 1979, the US orbital space station Skylab made a spectacular re-entry that was widely anticipated across the world.  As it disintegrated, debris from the spacecraft fell around the town of Esperance in Western Australia and were scattered over the arid inland.  Like the de-orbiting of Mir in 2001, Skylab’s re-entry caused a media frenzy.

Skylab is perhaps remembered more for this than for its actual mission, which was far less dramatic than the preceding Apollo program.  It was not even the first space station, as the USSR’s first Salyut had been launched two years before Skylab in 1971. Skylab’s main purpose was to investigate physiological, social and practical aspects of how humans could survive in space.  For the first time, thought was given to the comforts of astronauts and the spacecraft was designed to be a home.  

This faraway house could only be seen by those who made the effort to look up when it was passing; like all orbital material, it was largely invisible, its presence felt only through media reports.  In its reentry, however, the disembodied spacecraft became tangible, visible, and collectable, in the form of its scattered, and charred remains, in a way it had never been before.  These pieces were collected, curated, displayed and marvelled over in small and large museums and in private collections.  Anyone could own a piece of space if they were lucky; the debris was both space junk and precious artefact.  

When the Shire of Esperance, tongue-in-cheek, fined the US Government for littering, Australia had made a statement about the relationship between spacefaring and non-spacefaring states, and the nature of space industry:  being in space did not remove more terrestrial responsibilities. Through these local and personal interventions after its decay, the social significance of this house in the sky came to outweigh its historic significance.  In this paper I consider how the parts of Skylab became more than the sum of its whole.

Thoughts, leads, information, all welcome!



Friday, November 12, 2010

Doing orbital archaeology from space

I know I wrote a while ago that I was over remote sensing, but looking at a wonderful picture by CNES this morning of the Tango satellite as seen from the Mango satellite (if I remember the details correctly) I think I may have been too hasty.  It would be possible to do an archaeological survey of orbital space remotely from another spacecraft in orbit. Or many spacecraft in orbit.  Sampling would be critical to get across, as the distances are just so vast, but that's a minor problem, I think.

Terrestrial tracking could be recast as a kind of archaeological survey - they're just not aware that that is what they're doing yet!  Anyway this is more of a note to myself to remind me to come back to this idea. I have ten minutes before I leave for work, and this morning's task of delivering a masterclass to the graduates on conference networking. This afternoon the graduates are doing presentations on their industry work placements, there will be drinks, and if I don't imprison this thought in words now I might forget it in the awful rush of end-of-semester stuff.

Wouldn't some wealthy aerospace company like to give me job researching this kind of thing? It would make me so happy.

OK. Going to catch the bus now, in the rain.


Tuesday, November 09, 2010

Space food: recreating an authentic space experience on Earth. A review of The Astronaut's Cookbook.

I've had an ongoing interest in Space Food Sticks, which have quietly vanished from Australian supermarket shelves in the last few years, despite the fact that they seemed to have a healthy export market in the US. So when I learnt of Springer's recently launched The Astronaut's Cookbook:  Tales, Recipes, and More, by Charles T. Bourland and Gregory L. Vogt, I was curious to see what it might have to say about them.

The space food stick was created by Pillsbury in a form that could be inserted into a helmet port - but of course that was never going to work with the pressure differential.  Despite this, the originally caramel-flavoured sticks were part of the Apollo menu. Bourland and Vogt imply that sales of the Pillsbury space food stick were disappointing and the product never took off, so to speak (Bourland and Vogt 2010:32).

This is interesting as they certainly took off in Australia!  They were manufactured by White Wings, a company owned by Uncle Ben's (I think). I remember them as being chocolate, not caramel, although there was a caramel version available.  In later years the box featured a picture of a BMX bike rather than a spacecraft.  Perhaps there was a subtle safety message in this:  "astronauts wear helmets, so it's cool to wear a bike helmet".  Assuming that the callow youth thought astronauts were cool, of course.

When I held a symposium about the history and heritage of Woomera a few years ago, I bought many boxes and put an individually wrapped stick in each delegate's bag of symposium stuff.  A year or so later, I wanted to buy some to take to the Centre Spatial Guyanais, and was unable to find them anywhere.  (Perhaps, in retrospect, the intended recipients in French Guiana may have reason to be grateful for that).

USA peanut butter flavoured space food stick box.
Image courtesy of Mojowski 77






Australian chocolate space food sticks.  Author's image.


While Bourland and Vogt don't have much more to say about space food sticks, they do offer a recipe for Bacon Bars (2010:35):

Bacon Bars
1 lb cooked bacon

1. Fry the bacon until golden brown
2.  Place the warm bacon into a hamburger press
3.  Exert 3000 lbs of pressure for 10 seconds
4.  Remove the compressed bacon and let cool.
Yield:  more than you would want.
After samping the bar - so that you can say that you tried it - give the rest to the family dog. One nibble, and Fido will prance around the house barking [Translation:  "It's BACON!").

While I don't own a hamburger press, or have a dog, I confess I am very tempted to try making some version of this. Hell - it's BACON!

I was also amused by this recipe:

Breakfast cereal
1 cup of your favourite cold cereal*
1/3 cup of powdered milk
2 tsp of sugar or 1 packet artificial sweetener
1/2 cup cold water
1 resealable plastic sandwich bag
*Frosted cereals stay crisper longer than unfrosted cereals.

1.  Put all the ingredients in the bag.
2. When ready to eat, add water and reseal the bag.
3.  Shake the bag to dissolve the milk and sugar.
4. Open the bag and eat immediately with a spoon.
5.  Write a note to yourself to never do that again unless you become an astronaut.
Yield:  1 serving.

I think this recipe may reflect the US palate, much sweeter than the Australian, as I can't imagine any adult would actually add sugar to an already frosted cereal, let alone 2 teaspoons.  But perhaps things have to be sweeter in space.  (Hmmm.  This might not be too bad with Froot Loops ......).  If you want to try this one, I think the first step should read "Put all the ingredients in the bag EXCEPT the water".  There is an art to writing recipes that is often overlooked.  Or perhaps I mean a logic.

So you can see this is a very quirky and entertaining book, and may even have some recipes worth trying at home in it, as well as the historical and scientific background to space cuisine. (They include Russian space food as well).  I like the idea that we can be space tourists at home by recreating space experiences, in the same way that space food attempts to replicate the tastes and experience of being at home on Earth. The snippets offered here are from the promotional download, available at the Springer website,

I don't yet have my own copy.  And Christmas is not far away ...........




Saturday, November 06, 2010

Voyage to Venus: an archaeological survey of the Venusian surface

Introductory note
This was written as part of a book chapter, but as it developed Venus became increasingly irrelevant, so I took it out. I've been meaning to do something with it ever since. Posting it here might remind me!

Our tropical twin sister
Although Venus is a close neighbour, and had been the subject of speculation and study since ancient times, very little was known about it in the late 1950s due to the impenetrable cloud layers above the surface (Burgess 1985:8-9). Exploring Venus would be a scientific first as it was considered to be critical in understanding the evolution of the Earth (Dorfman and Meredith 1980:773). Our “twin sister” (Marchal 1983:269) had similar mass, gravity and volume.  Before the first missions, Venus also held the promise of life ….

Speculations ranged from a warm, swampy world that resembled Palaeozoic Earth, dry dusty mountains, oceans of carbonic acid, a surface covered in hot oil or puddles of molten metals (Burgess 1985:13, 131). C. S. Lewis (1943) created a lyrical sensorium of fragrant floating islands, a new Eden; Isaac Asimov (1954) imagined telepathic frogs swimming Venus’ warm oceans.  But when the first missions returned data, the dream of Venusian life was dashed.


Sapphires, diamonds and Daleks
The earliest missions were flybys. Venera 1 (USSR), launched 1961, failed to return data and entered a heliocentric orbit. In 1962, the US Mariner 2 flyby of Venus discovered that the surface temperature was likely around 430° C (Burgess 1985:2).  Venera 2, launched in 1965, also failed.

Venera 3 was a landing mission: the spacecraft crashed on the surface but also did not return data (Burgess 1985:22; Figure 1).  Venera 4, which reached Venus in 1967, was the largest interplanetary spacecraft yet launched at 1100 kg (Burgess 1985:22).  It had a more sophisticated heat shield, developed from experience with re-entry studies on ICBM warheads (Burgess 1985:38).  Venera 5 and Venera 6 (1969; Figure 5) were even heavier, and designed to resist up to 27 atmospheres (atm): but it seemed that the Soviet designers were reluctant to accept the estimation of a surface pressure of around 100 atm.  Both spacecraft were crushed before they reached the ground (Burgess 1985:40).

Venera 7, in 1970, was the first to land intact and return data from the surface (Basilevsky et al 2007:2097).  This time the landing capsule was designed to resist 180 atm, had stronger insulation and a titanium pressure sphere core (Pauken et al 2006:2).  Finally, the surface temperature and pressure were confirmed, and Venera 8, launched 1972, was designed to withstand only 105 atm (Burgess 1985:43).

Veneras 9 and 10, in 1975, were redesigned with a circular ring shock absorber.  They returned the first pictures of the surface.  In these extraordinary images, we see a field of flat rocks, with curve of the shock absorber visible on the lower edge.  The perspective, as if a person is looking down on their feet, gives the photographs a personal feeling.  The Veneras, in appearance, are not unlike the cyborg Daleks:  they almost seem as if they could start moving of their own volition, uttering some staccato imperative (Figure 2).  The images give a sense of the spacecraft orphaned on a strange planet.
Figure 1:  Venera 3 spacecraft.  Image courtesy of NASA

Figure 2:  Venera 9 spacecraft.  Image courtesy of NASA
In 1978, both the US and USSR sent missions to Venus.  Veneras 11 and 12 weighed in at 5000 kg each (Burgess 1985:48).

Figure 3:  Landing sites on Venus. Image courtesy of Philip Stooke
Pioneer Venus has been the only US program to place material on the surface of Venus.  Arriving at Venus in 1978, a bus delivered one large (called Large), and three small probes to the surface:  the engagingly named North, Day and Night for their proposed destinations.  The large probe was 1.5 m in diameter; the three small ones were 0.8 m.  Each had a payload of scientific instruments.

The spacecraft were designed and developed by the Hughes Aircraft Company.  The large probe was a pressure vessel module 73 cm in diameter and a deceleration module weighing 317 kg.  The heat shield was carbon phenolic with aluminium and fibreglass fittings. The pressure module containing the instrumentation was a titanium shell with ports and four sapphire and one diamond window for the instruments.  Internal shelves were made of beryllium (Dorfman and Meredith 1980).  The small probes were also titanium pressure modules with carbon phenolic heat shields, internal beryllium shelves and two diamond windows each.  The Large probe jettisoned its heat shield on the way down to the surface; the small probes retained theirs (Burgess 1985:82).

The last human artefacts to land on Venus were the Vega 1 and Vega 2 probes, released by rockets on their way to a rendezvous with Halley’s Comet.  They were essentially developments on the basic Venera lander type. Launched in 1984, both Vegas successfully landed on Venus in 1985 and returned data.  All subsequent missions have been flybys or orbiters.  Table 1 shows the all the Venus missions which have left material on the surface of Venus.


Date    Nationality    Mission    Components on surface
1965    USSR    Venera 3    Hard lander
1967    USSR    Venera 4    Hard lander
1969    USSR    Venera 5    Hard lander
1969    USSR    Venera 6    Hard lander
1970    USSR    Venera 7    Soft lander
1972    USSR    Venera 8    Soft lander
1975    USSR    Venera 9    Soft lander
1975    USSR    Venera 10    Soft lander
1978    USA    Pioneer Venus    4 probes
1978    USSR    Venera 11    Soft lander
1978    USSR    Venera 12    Soft lander
1981    USSR    Venera 13    Soft lander
1981    USSR    Venera 14    Soft lander
1984    USSR    Vega 1    Soft lander
1984    USSR    Vega 2    Soft lander

Table 1:  Missions with surface components on Venus


Archaeological sites of the future
The data returned by the Venera, Pioneer Venus and other missions revealed a fierce environment with the most corrosive upper atmosphere in the solar system: Venus’ yellow clouds are concentrated sulphuric acid (Reddy and Walz-Chojnacki 2002:36-37). On the surface, pressure from the predominantly CO2 atmosphere is 90 times that on Earth; Veneras 3-6 were crushed as they descended through the atmosphere.  The surface temperature is 430° C (740 K), above the melting points of lead, tin and zinc.  In such conditions, is it possible that the landers and probes have survived?

There is no evidence of plate tectonics and only “modest” evidence of geological activity on Venus (Jones 2007:169).  Erosion processes are slow, as there is no water, and surface winds move at human walking pace (Saunders 1999:100, 108, Jones 2007:343).  While the winds can move sand and dust, “the slow speed makes the particles ineffective as cutting tools and agents of erosion (Saunders 1999:108), so much so that craters a few million years in age appear fresh (Jones 2007: 275, Saunders 1999:100).  There is also little danger from the upper atmosphere.  The cloud layers start at around 45 km from the surface.  Droplets of sulphuric acid do leak downwards, but evaporate as the temperature rises towards the surface – they do not survive below about 25 km (Jones 2007:342).  Being on the surface would be like immersion in a hot dry ocean with slow currents of air (Burgess 1985:132).  There is no reason why archaeologists of the future should not find the Veneras, the Vegas, and the Large, North, Day and Night probes exactly where they landed, the diamond and sapphire eyes gazing sightlessly at the dull brown terrain (Figure 3).

The Venera and Vega spacecraft can be seen as representing the Cold War battle to imprint space with ideology (Gorman and O’Leary 2007).  Burgess even conceptualised the Veneras as “Red flags on Venus”, and each Venera mission carried Soviet emblems to commemorate the landing (Burgess 1985:35-36).  But they are much more than that.

The spacecraft also represent an evolution and adaptation to increasingly more accurate information about the nature of the “errant twin”:  each set of returned data enabled the design of spacecraft more suited to surviving Venusian conditions.  Like the early Cold War launch sites, and the cloud of orbital debris surrounding the Earth, they have made Venus a cultural landscape where the interaction of the environment and human material culture have formed a new entity.

References
Asimov, Isaac  1954  Lucky Starr and the Oceans of Venus.  Doubleday and Company
Basilevsky, A.T., M.A. Ivanov, J.W. Head, M. Aittola and J. Raitala  2007  Landing on Venus:  past and future.  Planetary and Space Sciences 55:2097-2112
Burgess, Eric  1985  Venus:  an errant twin.  Columbia University Press, New York
Dorfman, Steven D. and Clarence M. Meredith  1980  The Pioneer Venus Spacecraft Program.  Acta Astronautica 7:773-795
Gorman, A.C. and Beth Laura O’Leary  2007  An ideological vacuum:  the Cold War in space.  In John Schofield and Wayne Cocroft (eds) A fearsome heritage:  diverse legacies of the Cold War.  Left Coast Press, Walnut Creek, California
Jones, Barrie W.  2007  Discovering the solar system.  Second Edition, John Wiley and Sons Ltd, Chichester UK
Lewis, C.S.  1943  Perelandra.  John Lane, London
Marchal, C.  1983  The Venus-New-World Project.  Acta Astronautica 10(5-6):269-275
Pauken, Michael, Kolawa, Elizabeth, Manvi, Ram, Sokolowski, Witold and Joseph Lewis  2006  Pressure vessel technology developments.  4th International Planetary Probe Workshop, 27 June – 30 June 2006, Pasadena, California.  Available at ppw.jpl.nasa.gov/20070607_doc/6_2PAUKE.pdf.  Viewed 15 September 2008
Reddy, Francis and Greg Walz-Chojnacki  2002  Celestial delights:  the best astronomical events through 2010.  Celestial Arts
Saunders, R. Stephen  1999  Venus. In J. Kelly Beatty, Carolyn Collins Peterson and Andrew Chaikin (eds).  The New Solar System.  Fourth Editions, Sky Publishing Corporation and Cambridge University Press, Cambridge pp 97-110